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Critical behaviour of an isotropic spin system. I1 

A J Guttmanntg and A NymeyerS 
t Department of Physics, King’s College, Strand WC2R 2LS, UK 
$ Department of Mathematics, University of Newcastle, Newcastle, NSW 2308, Australia 

Received 30 December 1977 

Abstract. The critical behaviour of the step model of phase transitions on the square, 
simple cubic and body-centred cubic lattices is investigated by the method of exact series 
expansions. The model is found to be in agreement with two aspects of universality, 
namely the dependence of critical exponents on spin-space dimensionality and the lattice 
independence of critical exponents for fixed lattice and spin-space dimensionality. Series 
expansions for the three-dimensional susceptibility and specific heats are generated and 
analysed, and the critical exponents are found to be y=1*335iO.O1 and a =  
-0*04*0.10 respectively. In two dimensions the existence and nature of a phase tran- 
sition remains an open question. No evidence of either a conventional algebraic 
singularity or a vortex induced essential singularity is found. 

1. Introduction 

In Guttmann et a1 (1972) a new model exhibiting a phase transition was introduced. 
This model, called the ‘step model’, combined certain features of both the S = 1 Ising 
and the planar classical Heisenberg (PCH) model. Series expansions for the model 
were generated and analysed for the face-centred cubic (FCC) and triangular (T) 
lattices in Guttmann and Joyce (1973, to be referred to as I). 

The principal purpose of introducing the model was to test one aspect of the 
universality hypothesis which is that the critical exponents should be characterised by 
the symmetry of the order parameter, other characteristic parameters being equal. In 
this paper we have generated and analysed series for the step model on a simple cubic 
(sc), body-centred cubic (BCC) and a square (sa) lattice. This enables us to further test 
the above aspect of the universality hypothesis, and also to test another aspect, that of 
lattice independence for a given dimensionality. 

With the recent interest in two-dimensional planar spin systems, square lattice 
series might also be expected to shed some light on the nature of the phase transition 
for this system. In fact, it serves to demonstrate the richness of critical behaviour for 
models of this class, in that it seems to behave neither like the Ising model nor like the 
PCH model, that is, the susceptibility shows no sign of a conventional algebraic 
singularity, as observed for the Ising model, nor does it show any evidence of an 
essential singularity, as predicted for the PCH model (Kosterlitz and Thouless 1973, 
Kosterlitz 1974) and observed by the appropriate series analysis (Camp and Van 
Dyke 1975, Guttmann 1978). 

B Permanent address: Department of Mathematics, University of Newcastle, Newcastle, NSW 2308, 
Australia. 
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In three dimensions we find the susceptibility and specific heat both display 
conventional algebraic singularities, and we estimate the susceptibility exponent to be 
y = 1.335 *0.010 for both lattices, and the specific heat exponent to be a = 
-0.04*0.10 for both lattices. This is in excellent agreement with the recent results of 
Rogiers et a1 (1978) on the three-dimensional S = 4 X-Y model. 

The layout of this paper is as follows: in $ 2 we define the model and outline the 
derivation of the series expansions. In 0 3 the three-dimensional series are analysed, 
and in $ 4  the two-dimensional series are discussed. Section 5 is devoted to a 
discussion and conclusion. 

2. Derivation of series 

The Hamiltonian of the model is 
N 

(i , i)  i = l  
x = - J  c(e,-e,)-mH, 1 c(e,) 

where 

H, is the z component of the magnetic field, m is the magnetic moment per spin, and 
the sum is over nearest neighbour pairs. 

As shown in I, the zero-field partition function, 

= (c0r.h K)Nq/2  (1 + W(G)L(G)v") (2.3) 
{G) 

where q is the coordination number of the lattice, K = J / k T ,  U = tanh K and the sum 
is over all single bond graphs with vertices of even degree. n is the number of bonds in 
the graph. L(G)  is a polynomial in N, and in the thermodynamic limit only those 
terms linear in N contribute to the free energy. W ( G )  is the weight factor for graph 
G, and is defined by 

The zero-field isothermal susceptibility is defined through the correlation function 
(C(ei - 0,)) (see I for fuller discussion of this point) and we obtain 

k T X o Z ( T ) =  1 + 2  u"W(G)L(G) 
m {GI 

where the sum is over all magnetic graphs, that is, graphs with exactly two odd degree 
vertices. L ( G )  is the weak lattice constant for graph G, and W ( e )  is the weight of the 
associated graph e constructed from G by joining together by a single bond the two 
odd degree vertices in G. Any resultant double bonds are deleted. 
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We have tabulated all contributing zero-field partition function graphs up to and 
including order v20 (sa), v16 (sc) and v14 (BCC). Similarly, we have tabulated all 
contributing magnetic graphs (contributing to the susceptibility) to order v l 2  (sa and 
sc) and U'' (BCC). The magnetic graphs appear in Guttmann and Nymeyer (1977). 

As discussed in I, the integral (2.4) defining the weight function W ( G )  can be 
evaluated exactly for all contributing graphs with the exception of the type 17 graphs. 
For these graphs we have carried out the integration numerically, which results in a 
small uncertainty in some of the higher-order coefficients. These uncertainties are too 
small to affect the subsequent analysis. A full discussion of the evaluation of (2.4) for 
all contributing graphs is given in I. 

Given the lattice constants and the weights, it is a straightforward matter to 
construct the specific heat and susceptibility series using (2.3) and (2.5) and carrying 
out the appropriate differentiations. 

The resulting specific heat and susceptibility series are shown in tables 1 and 2 
respectively. 

Table 1. Specific heat series coefficients, Co/Nk = Zns0 unum. 

N SQ 

a" 
BCC 

all 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

0~000000000 
2~00000000 
3.33333333 

-0.31 11 111 11 
-6.85079365 
- 14.9210582 
- 17.4616899 

-7.39761717 
16*5290007 
48.9480566 
74.7227090 

0~00000000 
3~00000000 

11~00000000 
63.5333333 

356.257143 
2245.91048 

15098.5055 
104794.270 
743090.0*2.0 

0~00000000 
4~00000000 

14,6666667 
55.9377778 

577.029841 
72797.9589 
96270.2k0.4 

13071 5 10.0 * 60.0 

~~ 

Table 2. Zero-field isothermal susceptibility coefficients, kT,yo(T)/Nm2 = ZnaO b,u". 

N SQ sc BCC 

b, b, bn 

0 1 *oooooooo 1~00000000 1~00000000 
1 4~00000000 6~00000000 8~00000000 
2 6*00000000 15~0000000 28*0000000 
3 12~00000000 50~0000000 130.666667 
4 20.8333333 15 1.250000 551.666667 
5 35.2000000 463.200000 2362.66667 
6 59.4166667 1398.00833 9957.41111 
7 94.4634921 4 185.94286 4 1662.1460 
8 152.082440 12451.9757 173665.711 
9 234.350617 36818.0529 7193 14.563 

10 362.146147 108779.910 2973821.20 f 0.03 
11 547.188815 319708.005 12243043.34 *Os35 
12 819.803386 938717*92*0.02 
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3. Analysis of three-dimensional series 

The analysis of the three-dimensional series was carried out using standard Pad6 and 
ratio method techniques (Gaunt and Guttmann 1974). Initially, Pad6 approximants 
to the logarithmic derivative of the susceptibility series were formed. The poles and 
residues of the diagonal and off-diagonal approximants are shown in tables 3 and 4 for 
the sc and BCC lattices respectively. From these tables we made the estimates 

y =  1*36*0*06 U, = 0.35 1 f 0.002 (sc) 
(3.1) 

y =  1*36*0*05 ~ , = 0 ~ 2 5 0 + 0 ~ 0 0 1  (BCC). 

Table 3. Poles and residues of Pad6 approximants to the logarithmic derivative of the sc 
lattice susceptibility series. 

N [N/(N-1)1 [NINI [N/(N + 1)1 

3 0.3405 (-1.183) 0.3546 (-1.548) 
4 0.3516 (-1.391) 0.3507 (-1,365) 0.3522 (-1.411) 
5 0,3513 (-1.383) 0.3517 (-1.270) 0,3511 (-1.374) 
6 0.3515 (-1.389) 

Table 4. Poles and residues of Pad6 approximants to the logarithmic derivative of the BCC 
lattice susceptibility series. 

1 
2 0,2436 (-1.183) 0.2433 (-1.178) 
3 0.2433 (-1.178) 0.2436* (-1.183*) 0.2522 (-1.435) 
4 0.2502 (-1.351) 0.2504 (-1.360) 0.2509 (-1.379) 
5 0.2500 (-1,347) 0.2506 (-1.370) 

Initial attempts at a direct ratio method analysis gave similar results, but with no 
significant decrease in the confidence limits on the estimate of y and U,. This lack of 
increased precision is due largely to the alternating trend of the ratios. This alternat- 
ing trend is a characteristic of loose-packed lattices for this and other lattice models, 
and is due to a singularity at U = -U, if the critical point is at U = U,. For this reason we 
applied a transformation to the series which maps the singularity at -U, to infinity. The 
transformation chosen was x = 2u/(l+u/u,). This has the property that, if U, is 
precisely known, then xc = U,, and the point U = -U, is mapped to infinity. Even if U, is 
only known approximately, as in this case, the point U = -U, will be mapped far from 
the origin in the x plane, thereby substantially eliminating the effect of the singularity 
at U = -uC. 

Choosing l / u c  = 4.0 (BCC) and 2.86 (sc), transformed series in the x variable were 
obtained. Such a transformation of course leaves the critical exponent, but not the 
critical amplitude, unchanged. The transformed series are shown in tables 5 and 6 for 
the sc and BCC susceptibility respectively, along with the ratios of successive 
coefficients and the linear and quadratic extrapolants of successive ratios. In the new 
variable, all these sequences are monotone, and can be extrapolated with confidence. 
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Table 5. Ratio analysis of transformed sc lattice susceptibility series. 

N Coefficients Ratios Linear Quadratic 
a. r, = a, /an- l  extrapolants extrapolants 

s, = nr,, r,, = [ns, 
-(n - 1)rn-, - (n-2)~,-~] /2 ,0 

0 1~00000000 
1 3~00000000 3.00000 
2 8.0400000 2.68000 2.3600 
3 23.10970 2.87434 3.2630 3.7145 
4 68.04337 2.94436 3.1544 3.3229 
5 201.6386 2.96338 3.0395 2.7477 
6 597.7545 2.96448 2.9700 2.7951 
7 1769,125 2,95962 2.9304 2.8321 
8 5224.239 2.95301 2.9067 2,8427 
9 15391.656 2.94620 2.8917 2.8464 

10 45247.876 2.93977 2.8819 2.8496 
11 132752.55 2.93390 2.8752 2.8526 
12 388781.17 2.92862 2.8706 2,8548 

Table 6. Ratio analysis of transformed BCC lattice susceptibility series. 
~~~ ~ 

N Coefficients Ratios Linear Quadratic 
a" r, = a,/a,-l  extrapolants extrapolants 

s, = nr, tn = [ns, 
-(n - l)rn-l - (n - 2)~.-~]/2.0 

0 1.0 
1 4.0 4.0 
2 15.0 3.75 33000 
3 60,33333 4.02222 43667 5.1000 
4 248.4792 4.11844 4.4071 4.2475 
5 1029.667 4.14388 4.2456 4.0034 
6 4267.751 4.14479 4.1494 3.9568 
7 17659.17 4.13782 4.0960 3.9625 
8 72909.95 4.12873 4.0651 3.9726 
9 300356.6 4.1 1956 4.0462 3.9797 

10 1234760.0 4.11098 4,0338 3.9844 
11 5066472.0 4.10320 4.0254 3.9877 

Simply taking the mean of the last entry in the sequence of linear and quadratic 
extrapolants, which are separately monotone decreasing and monotone increasing 
respectively, gives l /xc = 2.8591 *0.0115 (sc) and l / x c  = 4-0066*0.0189 (BCC). 
However a more careful study of these sequences shows that the linear extrapolants 
are decreasing more rapidly than the quadratic extrapolants are increasing. Taking 
this trend into account produces the refined estimates l /xc = 2.8575 f 0.0025 (sc) and 
l /xc = 3.9995 f 0.0035 (BCC). Transforming back to the original variable, we obtain 
l / u ,  = 2.8550* 0.0025 (sc) and l / u c  = 3.9990* 0.0035 (BCC). 

These estimates of the critical point are used for the subsequent analysis. First, 
Pad6 approximants were formed to (uc- U )  (dldu) log ~ ( u ) l ~ = ~ ~ ,  in order to estimate 
the critical exponent y. The resulting approximants are shown in table 7. For both 
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Table 7. Pad6 approximants to (vc- U) d(log Xo(u))/dul,=, for the sc and BCC lattices. v, 
is given in the text. 

sc 
2 1.379 
3 1.367 1.403 
4 1.354 1.353 1.339 
5 1.355 1.334 1.349 
6 1.325 

BCC 
2 1,361 
3 1.355 1,374 
4 1.347 1.344 1.336 
5 1.348 1.336 

lattices there is a slight decreasing trend with increasing order of approximant. The 
results however are very similar for both lattices, and we estimate y = 1-33 f 0.02 for 
both. If one seeks a simple fraction, y = 4/3 seems the most likely. In any event, it is 
a useful mnemonic. Since the transformed susceptibility series essentially eliminates 
the effect of the singularity at -vC, it was considered worthwhile to study Pad6 
approximants to ( x , - x )  (dldx) log ,y*(x),  where ,y*(x) is the transformed suscep- 
tibility series. There is a widespread misconception that, since diagonal Pad6 
approximants are invariant under homographic transformations, such calculations are 
useless. However the operation of homographically transforming a function and 
taking its logarithmic derivative are not commutative, so the eponymous trans- 
formation is far from useless in this situation. In table 8 we show Pad6 approximants 
to ( x , - x )  (dldx) log x*(x)I,=,, which should yield estimates of critical exponents. 
These approximants are rather better converged than those derived from the series in 
the original variable, and we make the estimate y = 1.335 f 0.010 for both lattices. 
For subsequent investigations we can confidently use the estimate y = 4/3. Using this 

Table 8. Pad6 approximants to ( x , - x )  d(log x $  (x))/dxl.=,, where x $ ( x )  is the trans- 
formed susceptibility series, for the sc and BCC lattices. x ,  is given in the text. 

sc 
2 1.379 
3 1.372 1.403 
4 1.361 1.331 1,339 
5 1.338 1.337 1.338 
6 1.338 1.349 

BCC 
2 1,361 
3 1.358 1.374 
4 1.352 1.330 1.336 
5 1:335 1.336 
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value, we perform the usual consistency test, by forming PadC approximants to 
(,y(u))”’, which should have poles at l /uc .  These approximants are shown in table 9, 
and are indeed consistent with our previous estimates of uc. However the ratio 
method analysis of the transformed series appears to give better converged estimates 
of uc, so that this consistency test does not improve the accuracy of our estimate of uc, 
as if often does. 

Table 9. PadC approximants to ~ o ( v ) ) ’ ’ ’ :  with y = 4/3, for the sc and BCC lattices. 

sc 
3 0.3491 0.3485 
4 0.3486 0.3489 0.3496 
5 0,3504 0,3512 0.3502 
6 0.3506 0,3504 

BCC 
2 0.2422 
3 0.2497 0.2493 
4 0.2494 0,2495 0.2498 
5 0.2500 0.2513 0.2500 
6 0.2502 

We have also performed a ratio method consistency check, by calculating biased 
exponent estimates. That is, using the estimates of the critical point, the sequence 
{r,/(l +g/n)} was investigated, where r, = an/a,-l is the ratio of successive suscep- 
tibility coefficients, and g = y - 1 was taken to be 1/3. The resultant sequence was 
appropriately extrapolated for a loose-packed lattice, that is, alternate pairs were 
linearly and quadratically extrapolated against l /n.  To conserve space we do not give 
the detailed numerical data, but merely remark that the results are entirely consistent 
with the earlier, unbiased, estimates of vc. 

In order to estimate the critical amplitudes, we used the cited estimates of y and v,, 
and formed PadC approximants to ( ~ ~ - u ) , y ( v ) ’ ~ ’ ~ ~ = ~ , .  If we write ,y(v)- 
A ( l -  u/v,)-”,  then these PadC approximants should converge to A1”vc. The approx- 
imants are shown in table 10, from which we estimate v,A’/’ = 0.408*0.001 (sc), 
u,A’/’ = 0,2775 *0.0015 (BCC) so that A = 1-121*0*003 (sc) and A = 1.081 *0*004 
(BCC). It is customary to express amplitudes directly in terms of the temperature 
variable t = Tc /T-  1.  Writing x ( T ) -  C+t-’, it follows from the above estimates of A 
that C+= 1.124*0.004 (sc) and C+= 1.059*0.005 (BCC). 

Turning now to the specific heat series for the sc and BCC lattices, we show in 
table 1 1  the ratios (m = a2,,/a2n-2) and linear extrapolants (t, = nr,, - ( n  - l)rn-l) of 
the specific heat coefficients, defined by C / N k  = XnzO anvn. These series are expan- 
sions in v 2 ,  since the lattice topology only admits the embedding of non-magnetic 
graphs with an even number of bonds. Thus the series are expected to diverge at U:, 
as the specific heat and susceptibility must have the same critical temperature since 
they both derive from a single partition function, unless there is more than one phase 
transition point. The results shown in table 1 1  are consistent with the expected values 
of the limits of the sequences { t , , } ,  and for subsequent analyses we will assume these 
values of the critical point. 
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Table 10. Pad6 approximants to ( U ~ - U ) [ ~ ~ ( U ) ] ~ ’ ~ \ ~ ~ ~  for the sc and BCC lattices. 
y = 4/3 and U, given in the text. 

sc 
3 
4 0.3992 
5 0.4082 
6 0,4079 

BCC 
2 
3 0.2748 
4 0,2745 
5 0,2776 
6 0.2774 

0.4031 0.4037 
0.4067 0.4090 
0.4078 0.4079 
0.4078 

0.2716 0.2761 
0.2753 0,2757 
0.2768 0.2780 
0.2773 0.2774 

Table 11. Ratio method analysis of specific heat series for the sc and BCC lattices to 
determine U, and a. 

sc BCC 

N r, t” P” rn ttl P n  

2 3,66667 -1.1003 3.66667 
3 5,77576 9.99395 -0.8742 38.1393 346.377 
4 5.60741 5.10236 -1.2482 10.3156 -73.1555 -1.4198 
5 6.30418 9.09136 -1.1329 12,6160 21,8176 -1.0555 
6 6.72267 8.81490 -1.0514 13.2243 16.2658 -1.0384 
7 6,94070 8.24900 -1.0394 13.5780 15,6999 -1.0567 
8 7.09094 8.14262 -1.0404 

CO 

Expected limit = 1/02 = 8.151 Expected limit = 1/uf = 15.992 

Writing the specific heat as Co(u2)/Nk -F(l.- u 2 / u : ) - a ,  we attempted to estimate 
the critical exponent a by forming sequences (P,} where Pn = n (r,v: - l)+ a - 1. 
These are also shown in table 11. While rather short, the sequences {p,} do appear to 
have settled down to a value close to -1 for both lattices. If this value were precisely 
-1, this would correspond to a iogarithmic singularity. In fact, we estimate a = 
-0.04 f 0.1 for both lattices. Such weakly singular specific heat series are notoriously 
difficult to analyse. Pad6 approximants to (U: - u 2 )  d(Co(u2))/du21,,, (not shown) 
only yield the estimates a <0.2  (sc) and a (0.3 (BCC). This is typical of the 
behaviour of Pad6 approximants for such series. Our earlier estimate (I) for the FCC 
lattice was a = -0.04 f 0.06, in agreement with the value obtained here for the sc and 
BCC lattices. This value of a in fact corresponds to a cusp-like singularity, but 
numerically a is so small, and the series so short, that a = 0.00 cannot be ruled out, 
and is indeed the nearest simple fraction. In order to analyse the series for the specific 
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heat amplitude, we have assumed a logarithmic divergence, that is, we have assumed 
that Co(T)-A' ln(1- TJT). The value of the critical amplitude A+  can be esti- 
mated by forming PadC approximants to (Tc- T) dCo(T)/dTIT=Tc. In this way we 
obtained 

A'=-0*29*0*01 (sc); A + = -0.31 * 0.02 (BCC). 

4. Two-dimensional series 

The PadC and ratio method analysis described in the previous section has also been 
applied to the two-dimensional square lattice series, and we find no sign of a con- 
ventional algebraic singularity on the positive T axis. Analysis for an essential 
singularity of the type suggested by Kosterlitz (1974) for the PCH model has also been 
attempted, using the method described in Guttmann (1978). No evidence of that type 
of singularity was obtained either. 

Neither of these results are surprising. Since this model has the planar symmetry 
of the PCH model, it is expected to show non-simple behaviour in two dimensions. In 
particular since the PCH model does not admit long-range order for T > 0 and appears 
not to have a conventional algebraic singularity, these properties are also expected in 
the step model. For the PCH model however, vortex excitations (Kosterlitz 1974) lead 
to an essential singularity for both the susceptibility and specific heat. Such excitations 
are not however expected for the step model, since interacting spins with angular 
separation of less than 7r/2 are energetically equivalent to parallel spins, that is, 
zero-energy vortices can be formed. 

An additional complication is that the susceptibility has been calculated via the 
correlation function (C(di)C(dj)), whereas the normal Zeeman spin-field interaction 
leads to a susceptibility defined via the correlation function ( S i .  Si). This point is 
discussed in some detail in I. As mentioned there, this choice of correlation function is 
unlikely to affect the behaviour of the susceptibility in the three-dimensional system, 
However in two dimensions, where the very existence of a phase transition is such a 
delicate matter, it is necessary to be rather more guarded. Thus the susceptibility 
behaviour we observe may be an artifact of our choice of correlation function. No 
such reservation applies in the zero-field specific heat calculation however, where the 
spin-field interaction plays no part. The nature of the phase transition-if any-for 
this model in two dimensions thus remains an intriguing open question. 

5. Discussion and conclusion 

In three dimensions this model displays critical behaviour in precise agreement with 
that observed by Rogiers et a1 (1978) for the spin-f X-Y model. It is in trifling 
disagreement with the earlier result of Bowers and Joyce (1967) for the PCH model, 
who obtained y = 1.312 *0.006. It is not unlikely that longer series would bring their 
estimate into agreement with that obtained for this model, y = 1.335 f 0.010 and for 
the S = f  X - Y  model, y=1.333*0.001. The specific heat exponent a =  
-0.04*0.10 though not precisely estimated, is in agreement with the spin-4 X-Y 
model estimates a = 0.00 f 0.04 of Rogiers et al (1978), and the PCH model estimates 
of Bowers and Joyce (1967), who obtained 0 S a 4 A. We also find agreement with 
the earlier estimates (I) on the FCC lattice y = 1.32 0.04 and a = -0.04 * 0.06. 
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Thus in three dimensions the evidence is strong that the critical exponents are 
determined by spin-space and lattice dimensionality for a variety of systems with 
finite-range interaction. 

For the two-dimensional model, as discussed in the previous section, we have been 
unable to elucidate the nature of the phase transition. (This point is also discussed in 
I.) However, there is no evidence of either a conventional algebAic singularity or a 
PcH-like essential singularity. It may be that there is no phase transition in two 
dimensions, or that the phase transition is of more complex type than that observed 
for either the PCH or the Ising model. For the two-dimensional S = 1 X-Y model, 
Betts er a1 (1971) found evidence of an algebraically divergent susceptibility with an 
exponent of 1.5. Recent substantial extensions to this series have been obtained, but 
the nature of the singularity is now less clear cut (D D Betts, private communication). 

For the one-dimensional system, we take this opportunity to correct a minor error 
in I, and give the susceptibility in the thermodynamic limit as 

4 tan v f 2  m k**oZ(T)= 1 + 2 (c(ei)c(ej)) = 1 + m j = 2  1 - tan v / 2  ' 

Finally, we note that we have insufficient data to test lattice-lattice scaling (Betts et 
a1 1971) for this model, though we do have enough data to use it if we assume its 
applicability. Assuming the usual two-parameter scaling laws, all the other critical 
exponents follow immediately and assuming lattice-lattice scaling yields all the critical 
amplitudes for the other thermodynamic quantities. 
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